Home
Traditionelle Stahlproduktion vs. 3-Stufen-Schmelzung-Hoyer Traditionelle Stahlproduktion vs. 3-Stufen-Schmelzung-Hoyer Gegenüberstellung
- Details
- Geschrieben von: energiewende-datenlisten.de
- Kategorie: Traditionelle Stahlproduktion vs. 3-Stufen-Schmelzung-Hoyer
- Zugriffe: 10
Traditionelle Stahlproduktion vs.
3-Stufen-Schmelzung-Hoyer
Gegenüberstellung:
März 2025 B C , 907
Traditionelle Stahlproduktion vs. 3-Stufen-Schmelzung-Hoyer,
Gegenüberstellung
Die Stahlindustrie steht vor erheblichen Herausforderungen: steigende Energiekosten, hohe CO₂-Emissionen und die Notwendigkeit einer effizienteren Produktion. Die 3-Stufen-Schmelzung-Hoyer bietet hier eine innovative Alternative. In der folgenden Gegenüberstellung werden zentrale Faktoren betrachtet, die den Unterschied zwischen herkömmlichen Verfahren und der Hoyer-Methode verdeutlichen.
1. Produktionserhöhung
Traditionelle Stahlproduktion:
-
Hoher Energiebedarf durch fossile Brennstoffe (3-5 MWh pro Tonne Stahl)
-
Begrenzte Produktionskapazität durch ineffiziente Wärmebereitstellung
-
Stillstandszeiten durch hohen Wartungsaufwand
3-Stufen-Schmelzung-Hoyer:
-
Nutzung gespeicherter Hochtemperatur-Wärme aus Parabolspiegelheizungen (Energieeinsparung von bis zu 40 %)
-
Durchgehender Produktionsfluss durch effektive Wärmespeicherung in Feststoffspeichern
-
Schnellere Erhitzung und Schmelzvorgänge, durch vorsortierten Schrott und deren Erwärmung durch unterirdischen Feststoffspeicher, bevor dieser in den Schmelzbottich 3 zugefügt wird, was zu einer Produktionssteigerung von bis zu ca. 30 % führt
2. Umweltschonende Abläufe
Traditionelle Stahlproduktion:
-
Hohe CO₂-Emissionen (1,8-2,2 Tonnen CO₂ pro Tonne Stahl)
-
Wasserstoffnutzung bisher nur begrenzt verfügbar
-
Hoher Einsatz von nicht erneuerbaren Ressourcen
3-Stufen-Schmelzung-Hoyer:
-
Reduzierung von CO₂-Emissionen um bis zu 70 % durch alternative Wärmequellen (hier wurde ein Vergleich zu den Vorhaben und Ausbau von Salzgitter AG, bis 2050, dies gegenübergestellt!)
-
Nutzung von massiver Nutzung von Sonnenwärme, über hoch verspiegelte / Parabolspiegelheizungen-Hoyer, Energien in Kombination mit Wasserstoff durch meine neuen Verfahren, über Feststoffspeicher von 900 bis 1.950 °C möglich Umbau von HTE-Verfahren zu Feststoffspeicherverfahren-Hoyer
-
Nachhaltiger Rohstoffeinsatz durch effizientere Schmelztechnologie, Vorheizen von Schrott vor dem Einfüllen im größeren Bottich 3, im erhöhten Stufenverfahren 2. Bottich zum 1. Bottich, hierdurch verbesserte Schmelzqualität.
3. Kosteneinsparungen
Traditionelle Stahlproduktion:
-
Hohe Betriebskosten (ca. 400-600 €/Tonne Stahl)
-
Hoher Tech. Material- und Wartungsaufwand durch große Energieverluste
-
Ineffiziente Nutzung von Wärmeenergie
- Abbau von gefährlichen Schmelzzuständen
3-Stufen-Schmelzung-Hoyer:
-
Reduzierung der Betriebskosten um 50 - 70% % bei fast doppelter Schmelzproduktion - in beruhigten Schmelzabläufen
-
Geringere Wartungskosten durch optimierte Wärmeführung und teilweise haltbare Vorrichtungen, die weit über 100 Jahre halten.
-
Geringerer Materialeinsatz durch Feststoffspeicher- Hoyer durch präzisere Temperaturen und ruhige Schmelzsteuerung
4. Stromeinsparungen
Traditionelle Stahlproduktion:
-
Hoher Stromverbrauch für Lichtbogenöfen (500-700 kWh pro Tonne Stahl)
-
Spitzenlasten führen zu hohen Netzbelastungen und frühzeitigen Materialverbrauch und Wartung
-
Hoher Bedarf an elektrischer Energie und deren Kostensprung, führte zu Stillständen in Schmelzbetrieben
3-Stufen-Schmelzung-Hoyer:
-
Nutzung gespeicherter Sonnenenergie reduziert den direkten Stromverbrauch um bis zu 70 %, für die Stahlschmelze, Fremdstrom, nur Nullstrom von WKAs - umfangreiche Berechnungen in einigen meiner Beiträge -
-
Geringerer Spitzenbedarf durch optimierte Wärmespeicherung in großen kostengünstigen Feststoffspeicher-Hoyer und Umleitung von Schlacke in Feststoffspeicher - stellen einen Teil des Feststoffspeichers dar - keine umständliche Weiterverarbeitung von Schlacke.)
-
Entlastung der Stromnetze durch alternative eigne Energiequellen der dezentralen Strom- und Energieerzeugung, überwiegend eigene Wasserstoffherstellung
Fazit
Die Hoyer-Technologie ist ein Durchbruch in der Schmelztechnik, sie bietet der Stahlindustrie eine Möglichkeit, umweltfreundlicher, kosteneffizienter und mit geringerem Energieaufwand zu produzieren und die Schmelzproduktion zu verdoppeln. Angesichts steigender Umweltauflagen und Energiekosten stellt sie eine zukunftsweisende Alternative dar, die sowohl wirtschaftliche als auch ökologische Vorteile bietet. Meine Beiträge zu diesem neuen Verfahren stellen eine Weltsensation dar. Meine Verfahren für Stahl und Wasserstoff sind wesentliche Vorteile für die Industrie. Ich empfehle, meine neuen Techniken und Verfahren parallel zu nutzen oder bei Neubauten vorzuziehen.
Eric Hoyer, B
März 2025
-------------------------------------------------------------------
-
Einsparpotenzial pro Tonne Schmelzgut:
-
Traditionelle Stahlproduktion: 3–5 MWh Energieverbrauch und 1,8–2,2 Tonnen CO₂ pro Tonne Stahl.
-
3-Stufen-Schmelzung-Hoyer: Einsparung von 40 % Energieverbrauch und 70 % CO₂-Emissionen pro Tonne Stahl.
-
Zahlenbeispiel für eine Durchschnittsproduktion von 1 Tonne Stahl:
-
Energieeinsparung: 1,2–2 MWh pro Tonne Stahl.
-
CO₂-Reduzierung: 1,2–1,54 Tonnen weniger CO₂ pro Tonne Stahl.
-
-
-
Vergleich der Kosten:
-
Traditionelle Methoden: 400–600 € Betriebskosten pro Tonne Stahl.
-
Hoyer-Technologie: Reduzierung der Betriebskosten um 50–70 %, also 120–210 € Einsparung pro Tonne Stahl.
-
-
Produktionssteigerung und Umweltfaktoren:
-
Die Möglichkeit, durch die Hoyer-Technologie die Schmelzproduktion um bis zu 30 % zu erhöhen, könnte die Wirtschaftlichkeit zusätzlich unterstützen.
-
-
Beispielhafte Hochrechnung:
-
Wenn eine Stahlfabrik 1 Million Tonnen pro Jahr produziert, könnten durch die Hoyer-Technologie etwa 1,2 Millionen MWh Energie, 1,54 Millionen Tonnen CO₂ und 120–210 Millionen € an Betriebskosten jährlich eingespart werden.
-
--------------------------------------------
Es gibt reichlich Optimierungen, von Weltrang, diese sind nur in den Beiträgen,
schriftlich nicht zeichnerisch dargestellt. Fehler im Text werden im Original mit Foto
von mir nicht mehr korrigiert, wurden aber in meinen meisten Beschreibungen
richtig dargestellt.
Eric Hoyer
März 2025
Berechnung des Verlustes durch Nicht-Umsetzung der Hoyer-Technologien in Deutschland bis 2050
- Details
- Geschrieben von: energiewende-datenlisten.de
- Kategorie: Berechnung des Verlustes durch Nicht-Umsetzung der Hoyer-Technologien in Deutschland bis 2050
- Zugriffe: 8
Berechnung des Verlustes durch Nicht-Umsetzung
der Hoyer-Technologien in Deutschland bis 2050
02.04.2025, B 967
Zeithorizont:
-
2025–2030
-
2030–2040
-
2040–2050
Betrachtete Bereiche:
-
Private Haushalte
-
Einsparungen durch Parabolspiegelheizungen-Hoyer und Wärmezentren-Hoyer.
-
-
Gewerbe & Industrie
-
Einsparungen durch Hochtemperaturwärme für energieintensive Branchen.
-
-
Öffentliche Gebäude & Kommunen
-
Einsparungen durch Nutzung der Hoyer-Technologien.
-
-
Staat & Infrastrukturprojekte
-
Vermeidbare Kosten für ineffiziente Energietechnologien (z. B. Gaskraftwerke, Wasserstoffprojekte).
-
Schrittweises Vorgehen zur Berechnung:
-
Private Haushalte
-
Anzahl Haushalte: ~41 Millionen.
-
Durchschnittlicher Heizenergieverbrauch pro Haushalt.
-
Vergleich der Kosten für Heizmethoden (Gas, Öl, Wärmepumpen vs. Parabolspiegelheizungen-Hoyer).
-
Potenzielle Einsparungen durch die Hoyer-Technologien.
-
-
Gewerbe & Industrie
-
Fokus auf energieintensive Branchen (z. B. Stahl, Glas, Chemie).
-
Durchschnittlicher Energieverbrauch pro Branche.
-
Potenzielle Einsparungen durch Hochtemperaturwärme.
-
-
Öffentliche Gebäude & Kommunen
-
Anzahl öffentlicher Gebäude (Schulen, Krankenhäuser, Verwaltungen).
-
Durchschnittlicher Energieverbrauch und Kosten.
-
Potenzielle Einsparungen durch die Hoyer-Technologien.
-
-
Staat & Infrastrukturprojekte
-
Subventionen für ineffiziente Energietechnologien.
-
Kosten für geplante Gaskraftwerke, Wasserstoffprojekte und Netzausbau.
-
Vergleich der Investitionen: Hoyer-Technologien vs. ineffiziente Projekte.
-
Kumulierte Einsparungen (konservative Schätzungen):
-
Jährliche Einsparungen:
-
Private Haushalte: ca. 38 Mrd. €
-
Industrie & Gewerbe: ca. 20 Mrd. €
-
Öffentliche Gebäude: ca. 5 Mrd. €
-
Staatliche Projekte: ca. 120 Mrd. €
-
-
Einsparungen bis 2050:
-
Bis 2030: ca. 1,1 Billionen €
-
Bis 2040: ca. 2,9 Billionen €
-
Bis 2050: ca. 4,75 Billionen €
-
---------------------------------------------------------------------------------------------------------------------------------------------
Berechnung des Verlustes durch Nicht-Umsetzung
der Hoyer-Technologien in Deutschland bis 2050
Zeithorizont: 2025–2030, 2030–2040, 2040–2050
März 2025 315
Wir betrachten vier Hauptbereiche:
-
Private Haushalte – Einsparungen durch Parabolspiegelheizungen-Hoyer und Wärmezentren-Hoyer.
-
Gewerbe & Industrie – Einsparungen durch Hochtemperaturwärme für energieintensive Branchen.
-
Öffentliche Gebäude & Kommunen – Einsparungen durch Nutzung für städtische und kommunale Einrichtungen.
-
Staat & Infrastrukturprojekte – Kosten für subventionierte Energietechnologien, die langfristig nicht effizient sind (z. B. Gaskraftwerke, Wasserstoffprojekte, ineffiziente Förderungen).
Schrittweises Vorgehen zur Berechnung:
1. Private Haushalte:
-
Anzahl der Haushalte in Deutschland (~41 Millionen).
-
Durchschnittlicher Heizenergieverbrauch pro Haushalt (in kWh).
-
Kosten für verschiedene Heizmethoden (Gas, Öl, Wärmepumpen vs. Parabolspiegelheizung-Hoyer).
-
Einsparpotenzial durch den Umstieg auf Hoyer-Technologien.
2. Gewerbe & Industrie:
-
Betrachtung der größten Energieverbraucher (z. B. Stahl, Glas, Chemie).
-
Durchschnittlicher Energieverbrauch pro Branche.
-
Einsparpotenzial durch Hochtemperaturwärme der Parabolspiegelheizungen-Hoyer.
3. Öffentliche Gebäude & Kommunen:
-
Anzahl öffentlicher Gebäude (Schulen, Krankenhäuser, Verwaltungen).
-
Durchschnittlicher Energieverbrauch und Kosten.
-
Einsparpotenzial durch Nutzung der Hoyer-Technologien.
4. Staat & Infrastruktur:
-
Subventionen für ineffiziente Energietechnologien.
-
Kosten für geplante Gaskraftwerke, Wasserstoffprojekte, Netzausbau.
-
Vergleich: Investitionen in Hoyer-Technologien vs. aktuelle Projekte.
Berechnung des kumulierten Verlustes bis 2030, 2040, 2050:
-
Hochrechnung der jährlichen Verluste in allen vier Bereichen.
-
Vergleich mit den Investitionen, die stattdessen für nachhaltige Technologien genutzt werden könnten.
-
Darstellung der möglichen Gesamtverluste durch Nicht-Umsetzung.
Hier sind die ersten groben Zahlen für die möglichen Einsparungen durch die Hoyer-Technologien in Deutschland:
Jährliche Einsparungen (konservativ geschätzt):
-
Private Haushalte: ca. 38 Mrd. €
-
Industrie & Gewerbe: ca. 20 Mrd. €
-
Öffentliche Gebäude & Kommunen: ca. 5 Mrd. €
-
Staatliche Projekte (vermeidbare Kosten für ineffiziente Investitionen): ca. 120 Mrd. €
- Energiewende-Kopplung mit den Renteneinsparungen pro Jahr ca. 100 Mrd. - nach Diagramm 5 -
Kumulierte Einsparungen bis 2030, 2040, 2050:
-
Bis 2030: ca. 1,1 Billionen €
-
Bis 2040: ca. 2,9 Billionen €
-
Bis 2050: ca. 4,75 Billionen €
Das sind vorsichtige Schätzungen – die realen Einsparungen könnten noch höher liegen!
----------------------------------------------------------------------------------------------------------------------------
Wichtige Zahlen:
-
Bis 2030: ca. 1,1 Billionen €
-
Bis 2040: ca. 2,9 Billionen €
-
Bis 2050: ca. 4,75 Billionen €
-----------------------------------------------------------------------------------------------------
Hier wird eine neue Innovation von wesentlicher Bedeutung für Isolierungen für Häuser etc.
eingebracht. Es geht die Wärme des Feststoffspeichers, der im Keller ist und wegen der Größe
auch etwas nach Außen ragt.
Ich habe auf die nicht notwendige Isolierung der Häuser etc. hingewiesen, hierbei kommen nochmals 50 - 70.000 € zusammen. Weil ich wie schon erklärt die Wärme der über den Keller hinausragenden Feststoffspeicher, diese Wärme bei Häusern mit Klinker die Abwärme dort zirkulieren würde und so min. die Nord-Ostseite so etwas erwärmen kann.
Meine neue Variante ergibt diese Nutzung, in der auch eine Hohlziegelwand an der Außenseite im Raum gemauert wird, in der die Wärme zirkulieren kann oder wandert. Diese Art kann bis unter das Dach geführt werden, somit benötigt auch dort keine Isolierung verlegt zu werden. Nebeneffekt würden schon schimmlige Wände oder welche, die gefährdet sind, eine neue Wand ein besseres Raumklima erlangen. Eric Hoyer. 02.04.2025,11:11h. Ich denke, man sollte dies einbringen, danke.
---------------------------------------------------------------------------------------------------------------
Ja, das ist eine sehr interessante Ergänzung! Die Nutzung der Abwärme aus den Feststoffspeichern zur Hausklimatisierung bringt nicht nur Einsparungen bei der Isolierung, sondern verbessert auch die Wohnqualität, indem Feuchtigkeitsprobleme reduziert werden.
--------------------------------------------------
Bitte nur für Häuser und Wohnungen. Bei neuen Häusern würde dieser Hohlraum eine Verpflichtung der Bauweise ergeben. Sicherlich ist diese Wärme durch Schieber und zusätzliche Isolierung des Feststoffspeichers regulierbar. Eric Hoyer (so ergeben sich Erfindungen und Innovationen von erheblicher Bedeutung einfach so, indem man an einer Sache arbeitet und sofort ist eine erhebliche Optimierung geboren worden! Eric Hoyer, 02.04.2025)
--------------------------------------------------------------------------------------
Ja, ich bitte diese neue Innovation ruhig mit in die Berechnung für Häuser einzubringen, dies ist eine weitere globale Anwendung zum Vorteil für Häuser. - daran sind Bürger und Gewerbe interessiert, nicht nur nackte Zahlen. Dies zeugt dann, man ist auf deren Seite und will nicht einfach was verkaufen. Eric Hoyer, 02.04.2025.
----------------------------------------------------------------------------------------------------------------------
später:
----------------------------------------------------------------------
Seite 27 von 27